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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3670

DETERMINATION OF VORTEX PATHS BY SERIES EXPANSION
TECHNIQUE WITH APPLICATION TO CRUCIFORM WINGS

By Alberta Y. Alksne
SUMMARY

A series method of determining two-dimensional vortex paths is con-
gsidered and applied to the computation of vortex positions behind a slender
equal-span cruciform wing at any angle of bank as a function of the dis-
tance behind the trailing edge. Calculated paths are shown for four bank
angles. TFor a bank angle of 450 comparison is made with the results of a
closed expression given in NACA TN 2605. For other bank angles water-tank
experiments provide qualitative comparison. Satisfactory agreement is
found for a sufficient distance downstream to include most practical
missile~tail positions.

The interference forces on an equal-span interdigitated cruciform tail
behind a slender equal-span cruciform wing are calculated for four angles
of bank from the vortex positions found by use of the series.

INTRODUCTION

Tt is now well established that the vortex wake at the tail of a
slender configuration similar to those used for many missiles is often
entirely rolled up and that the downwash field at the tail can be obtained
by use of a single discrete vortex as an approximation to the vortex wake
trailing from each wing panel. If attention is confined to configurations
for which the ideas of conventional slender-body theory can be used, the
problem of determining the steady-state vortex paths becomes an exact
analog of the classical problem of the motion of a system of parallel
rectilinear vortices.

Sacks, in reference 1, has investigated the case of an equal-span
cruciform wing at 45° angle of bank where the symmetry of the problem per-
mits the writing of a closed analytic solution for the vortex paths. The
direct extension of his method to other angles of bank where no such
symmetry exists does not appear feasible.

In the present paper, in order to avoid the requirement of symmetry,
a series has been developed to define the vortex paths. Paths computed by
this method are compared with the analytic results of Sacks for 459 angle
of bank, and with the results of water-tank experiments for three other
bank angles. Calculations are made of the forces on a tail due to vortices

in the computed positions.
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SYMBOLS

2
aspect ratio, (2s) he

one half the distance, at t = O, between the two vortices
associated with a component wingl

distance of a vortex from the plane of symmetry of a component
taill

maximum chord

1ift coefficient,
pOO 0

2
(The reference area used in this report is the area of one

component wing.)

interference 1ift coefficient (approximate)
interference normal-force coefficient

tail surface that is horizontal at ¢ = ﬁ for interdigitated

tail
perpendicular distance from a vortex to a component tail
1ift, force in the 2z direction

force in the 2z direction on a cruciform wing (invariant with
bank angle)

projection of the interference normal force on the x, plane
(approximately the interference 1ift)

interference normal force, that is, normal force on a component
tail due to the presence of vortices

positive integer

radius of a cylindrical boundary; specifically, the radius of the
water tank : '

Ny, - v3)® + (25 - 24)2

area
(The reference area used in this report is the area of one ,
component wing.)

1By "component wing" (or "component tail") is meant a wing (or tail)

consisting of two "panels" lying in the same plane.
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Xy¥s2Z

jel]

semispan at trailing edge (maximum semispan)

I'yt
2

parameter used in series,
' bra

time, related to x by x = Uyt
free-gtream velocity
tail surface that is vertical at ¢ =2 for interdigitated tail

i

velocity components in y and z directions due to two-dimensional
vortices

complex velocity, v - 1w

Cartesian coordinates, origin at center of wing trailing edge,
x axis in the stream direction (See fig. 1.)

angle of attack, radians

attitude angle of cruciform wing, that is, the angle between the
free stream and the center line, radians

circulation, positive counterclockwise
Tw

reference vortcex strength, invariant with bank angle, ——————0o
pooUoo( 2a)

complex coordinate, y + iz
y - iz
mass density of air at free-stream conditions

parameter used in series, L

J2

perturbation velocity potential

wing angle of bank positive clockwise
Subscripts

tail

wing
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ANATYSIS

Axig System

The coordinate system used in this report is a wind-axis system as
shown in figure 1, where the origin lies at the trailing edge of the wing
center line. The angle of attack is required by the limitation of the
theory to be small and the trailing edges of the wing panels are assumed
to lie in the x = 0 plane.

Series Solution for Vortex Motions

Analytical solutions for the motion of a system of parallel recti-
linear vortices are given by Grobli in reference 2 for the case of three
vortices with certain restrictions on the starting positions and strengths,
for four vortices with a plane of symmetry, and for 2n vortices with n
planes of symmetry. The solution for four vortices as given by Grobli
contains an error2 but is given correctly by Sacks in reference 1 and is
there applied to the case of the vortices behind a slender equal-span
cruciform wing at 45° angle of bank, that is, to four vortices of equal
strength starting in the form of a square. The solution in this ‘case
depends on the existence of a plane of symmetry and cannot readily be
extended to cases of arbitrary vortex strength where the symmetry is
lacking.

The present analysis undertakes to define the positions of a number
of vortices of given strengths and initial positions in terms of a Taylor's
series in powers of the time, t, thereby eliminating the dependence on
symmetry. Expansion around t = O results in the following expression .
for the position of the ith  vortex:

2. n
¥ = (yi) + <§Z§> t + <é yi) =L .. <é yi) t? + . . .7
t=0 at /t=0 dt2/4-0 2 ath/y_o nt

2 n
zy = (z1) + <§E§> t + <é z§> B, (é Z{> 2.,
=0 dt /4=0 dt2/p0 2 ath/y o 1t

o+
\Y

) (1)

The coefficients of this series can be determined by using the Biot-
Savart law for two-dimensional vortices parallel to the x axis. TFor a
system of free vortices, if vy and wi are the y and z components of
the velocity of the ith vortex due to a vortex of strength I'; situated
at Vi 235 the required vortex laws are:

2pgge 147 of reference 2, equations 23 and ok,
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vi(t) = & y1(t)

}: -ry zi(t) - 23(t) )

dt on P2
i | ? (2)
wy(t) = & 2(t) = Z ! yi(’“)r; y3(t)
J# J
where r2 = [y;(t) - y5(£)12 + [23(t) - 25(+)]°

Now if the positions of all the vortices are known at t = O, it is
possible to write the coefficient of the first power of t 1in equation (1) -
for all the vortices concerned by simply substituting the initial positions
. . dy{) <EZ£) .
into equation (2) to get (— and | —= . Thus the first two terms
of the series are known for all the vortices, that is, y; and zj can now
be written as linear functions of 1. Substituting these first two terms
into equation (2) and differentiating with respect to t and then setting
t equal to zero gives the coefficient of the second power of t. Now
three terms of the series are available for substitution into equation (2),
etc. Note that at each step the unknown terms of the series-are of no
significance in the process since they still contain t as a factor after
the differentiation and therefore disappear when t 1is set to zero.

The following formula for differentiation of a product of two func-
tions is convenient for use in obtaining higher order terms:

n n n-i _ - 1) a2 n-2
ath gt 1! dt agn-1 ot at2 atn-2
n!? gn-k k : n
o o e ” g dk f+...8 d_. f (3)
(n - k)!k! at®™*  at’ ath
n>1

0<k<n
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In the present case, if f(t) = ;% then g(t) represents (zy - zj)
T

n dn+ly. s n %Zs - Zs
when 4 vy = _ EE: J 4 = J g required, and (y; - y,)
at athtt or dth  r2 | -

J#i

n n+1 's n y3 - ys
when -d—wi ) = %i < <44 1 JJ is sought.
att ath 2r 4t r2

I

Now it can be seen that if the positions can actually be described
by such a series, the only restriction on problems to be solved is that
the series should converge rapidly enough to be practical for the desired
values of t and that the work of evaluating the coefficients should not
be prohibitive.

As a test of the method the coefficients have been determined out to
the fourth power of t for the case which corresponds to the equal-span
cruciform wing at any angle of bank, that is for four vortices initially
placed at the corners of a square with diagonally opposite vortices of
equal strength but opposite sense. Furthermore, since there was a closed
analytic solution available for this configuration at an angle of bank of
459, five additional coefficients were found for that case with a view to
increased understanding of the behavior of the series.

Initial Positions and Strengths of Vortices

z In accordance with the work of
Spreiter and Sacks (ref. 3) all of the

'\\\\\\\ vorticity behind a wing has been assumed

“é S~ to be concentrated in vortex lines
springing from the centroid-of-vorticity

// J4 positions at the trailing edge and sub-

i ject thereafter to the two-dimensional
2 °// vortex laws. Since the circulation, T,
/ is equal to the jump in potential, Agp,

y
ry and since slender-body theory leads to
' an elliptic spanwise distribution of
4 AP, the centroid of vorticity at the

trailing edge of each wing panel lies

at a point x/4 of the distance from

3 the center line to the wing tip. Thus,
each vortex pair has a span of 2a, where
a = (n/4)s,; as shown in sketch (a).

Sketch (a)




NACA TN 3670 7

The 1ift of the equal-span cruciform wing, L., that is, the force
in the direction of the positive 2z axis does not vary with angle of bank
but remains throughout:

Ly = p U lw(22) (1)

where Ty, is the circulation around the horizontal wing at angle of bank
¢ = 0. At other angles of bank the vortex strengths are related to Ty
as follows:

r, = - I'p = I'ycos ¢ )

(5)

Fwsin ¢

', = -Tg4
where the vortices are numbered as in sketch (a).
Solutions

The use of equations (1), (2), (3), and (5), together with the fact
that the initial positions of the vortices are known in terms of the wing
semispan, sy, and the bank angle, @, leads to a series for the vortex
positions at any time +t. Coefficients have been found out to the fourth
power of t, and with the substitution

Tyt
T = (6)
hnaZ

the series can be written as follows:




by,
Sy

bz,

Sy .

Ly,
Sw

bz,

Sw

by,
Sy

Lz,
8w

by,
8w

Lz,
nsSw

1
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sin ¢§ - (sin @ cos §)T - % (sin ¢.COSS¢)T3 +

% (sin @ cos®@)(sin®@ - cos2@)T*. . .

cos § - (1 + cos®@)T - (cos ¢)T2 - % cos®@(1 + 2 cos2@)T3 -

% cos $(3 - 4 sin®@ cos2@)T4. . .

-+

- cos § + (sin ¢ cos @)T + % (sin3@ cos @)T3
% (sin2@ cos ¢)(sin2¢ - cos2@)T4. . .
sin @ - (1 + sin2@)T - (sin @)T2 - % sin2(1 + 2 sin2@)T3 -

% sin §(3 - b sin®f cos2@)T4. . .

- sin @ - (sin ¢ cos )T - % (sin @ cos3¢)T® -

2 (sin @ cos®@)(sin3@ - cos3@)T4. .

cos B - (1 + cos2@)T + (cos @)T2 - % cosz¢(l + 2 cos2¢)T3 +

% cos P(3 - 4 sin3f cos2@)T4. . .

cos @ + (sin @ cos @)T + % (sin3¢ cos ¢)T3 -
% (sin®@ cos @) (sin2¢ - cos2@)T4. . .
- sin @ - (1 + sin®@)T + (sin @)T2 - % sin®?@(1 + 2 sin2¢)T3 +

% sin @(3 - 4 sin2@ cos2@)T4. . .

SN

> ‘(7)
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For the special case treated by Sacks, that is, the equal-spah
cruciform wing at an angle of bank ¢ = n/h, there is a plane of symmetry
and the series is simplified so that the labor of evaluating the coeffi-

cients is a great deal less.

For this case coefficients were found out

to the ninth power of t. Since cos ¢ = gin ¢ = 1ﬁf§, and

Tw

' ==Tg =Ty = ~Tp === the series can be written, letting + = T/JE}

42 v,
7T

Sw

2

1-37-2r2 - L: ™ - 8 T4 -
3 3

932 -7 - 3062 -8 - 12172
315 315 2835

2 8

l+7+=713+ =175 -

15

-l-31‘+212-£1—3+

15
g_2§76 —.9_3_2_1-7 '+.3_O_6_278 -%79. . .
L5 315 315 2835 )

T9.

> (8)

_];3_LL.T7-_];3_3_]'_8.T9,
315 2835

._8.1-4..28..1-54.
3

Relation Between T and x

As pointed out previously, the vortex laws used here apply to
straight-line vortices, parallel to the
in both directions, and changing their position with time. Their use in
the situation to which they are to be applied depends on the three-
dimensional steady-state vortex picture showing relatively gradual vari-
ations in the x direction. Within the
the correspondence is exact, and the results obtained in the previous
section can be used to compute the three-dimensional vortex paths behind
a slender equal-span cruciform wing by means of the relation

X = Uyt

X axis, extending to infinity

limits of slender-body theory

(9)
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Now since
o = Dwt (6) -
Yra®
and
Ly = p U lw(2a) ()
and in slender theory
cr, = (n/2)ha (10)

the positions of the vortices at any downstream station, x/sw, can be
found from equation (7), or for 45° bank from equation (8), by use of
the relation

X _ Jt4(Sw)2 T = JTS(SW)Z T (11)

Woohop Sy 2hySydy

where &, is the "attitude angle," that is, the angle between the center
line of the cruciform wing and the free-stream direction.

If Ay = &EE as for triangular wings, then equation (11) can ve
written: Cw

4A -
X 2w o 22 g (12)

Sw - 16CLW S&W

Equation (12) provides the relation used in the present report.

EXPERIMENT

In order to provide a gqualitative means of Jjudging the results of
the computations for angles of bank for which no closed analytic solution
is available, experiments were run with small models in a water tank.
Water miscible paint spread on the trailing edge before each run remained
floating on the surface of the water behind the model and made the vor-
tices visible. For various reasons, it was considered inadvisable to -
attempt quantitative comparison. TFor one thing, there is no general
agreement as to the point in a vortex swirl which is to be considered
the center of the core, and the centroid of vorticity, which is the
quantity calculated in this report, is even more difficult to define.
For another thing, the best pictures were obtained at angles of attack
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which were too high to be entirely compatible with the assumptions of
the theory. However, the water-tank experiments were expected to demon-
strate the trends in the variation of the vortex patterns with bank angle.

Water Tank and Models

The water tank used in the present experiments was the same as that
described by Sacks (ref. 1) and is shown in figure 2. Three different
models were used, all equal-span cruciform wings constructed of sheet
metal 0.050 inch thick. One model had an 8-inch span and an aspect ratio
of 2. The others were smaller, having only a hoinch span. One of these
had an aspect ratio of 1, the other, 2. Various angles of attack were
tried. The most successful runs were made at & = i% = 15°. As in ref-
erence 1, motion pictures provided a record of the distance traveled by
the wing as well as of the changing vortex patterns.

The water tank was not deep enough for the 8-inch-span model to
continue running much beyond two span lengths below the surface. However,
the camera was kept running after the model stopped and the time measured
in frames was used to determine an equivalent distance.

Accuracy and Repeatability of Experimental Data

It was Tound that runs made with the two small models showed exces-
sive influence of currents set up in the tank by the supporting mechanism
and by various outside distrubances. The vortex paths behind the model
with 8-inch span showed little effect of stray disturbances but, since
the water-tank diameter was only 22 inches, there was a large systematic
error due to wall interference.

A comparison was made of the vortex patterns at corresponding dis-
tances behind the three different models for '¢ = n/4. The choosing of
the particular runs in which the symmetrical vortex pattern typical of
this symmetrical configuration was maintained eliminated most of the
irrelevant disturbances which made data from the small models generally
unsatisfactory. Measured in terms of the half span of the model, the ¥y
coordinates of the vortex cores at corresponding distances behind the
three models did not differ by more than 10 percent. However, the =z
coordinates behind the large model differed from those behind the small
models by about 25 percent.

A wall-interference correction consisting of a constant upwash,
computed on the assumption of four discrete vortices (see Appendix A)
was sufficient to bring the results for the large model into very good
agreement with those for the small models. Since this was the case for
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the bank angle of 450 where the general nature of the vortex pattern was
known, and since the upwash at t = O was found, under the same assump-
tion, not to vary with bank angle, it was assumed that the data obtained
from the large model for other angles would also be satisfactory when the
same correction was applied. The water-tank pictures shown in this report
are those taken with the large-span model and the necessary corrections
are indicated by additional reference points marked at the sides of the
prints. :

No allowance was made for the effects of stopping the model before
the runs were complete. The influence, if any, should have appeared as
an additional downwash at the surface near the end of a run, but none was
noted in comparing runs made with the large and small models.

RESULTS AND DISCUSSION

Computations of vortex paths behind a cruciform wing have been made
using equations (7) and (8) for four angles of bank, ¢ = n/16, =/8, 3x/16,
ﬂ/h. Figure 3 shows the paths with y/sw plotted against z/sw for ‘
. various values of x/sw in a coordinate system in which the x axis
lies in the stream direction and the bank angle is measured from the 2z
axis and is positive when the starboard wing is rotated down. The points
shown are for T = 0, 0.276, 0.352, 0.449, 0.517, 0.582, 0.650, and 0.766,
which for an aspect-ratio-2 wing with a 1ift coefficient of 0.82 (&=xn/12),
corresponds to x/sy = 0, 4.1, 5.2, 6.6, 7.6, 8.6, 9.6, and 11.L4; that is,
this figure may be considered either as a time history or as a representa-
tion of three-dimensional vortex paths.

Computations have been carried out to a value of T corresponding
to the "leapfrog" position of reference 1, that is, to the value at which
the two upper vortices pass between the two lower vortices for a bank
angle of U450,

Figure 4 shows water-tank pictures taken with the 8-inch-span model
at an attitude angle of n/12 radians and at bank angles of %/16, /8,
and 3ﬁ/l6. Choice of the appropriate frames from the motion picture film
made it possible to present pictures corresponding very closely to most of -
the values of T wused in the computations. No comparison is shown for
small values of T where the vortices were in the process of rolling up
and the visible vortex cores were not only poorly defined but did not yet
correspond to the centroids of vorticity. As can be seen from the first
picture of each series, the solid white markers indicate the point at
which the trailing-edge center line entered the water. The open white
markers indicate the corrected position of this reference point, shifted
upward to account for the upwash due to the presence of the tank wall.
(Ssee Appendix A.) It can be seen that the variation with angle of bank
found by the calculations (fig. 3) is similar to that shown in figure k.
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In figure 3(d) the positions as calculated by the formulas of ref-
erence 1 are shown for comparison with the series results at a bank angle
of =n/4%. For this bank angle the ninth-order terms of the series were
available from equation (8). Points are also shown computed with terms
out to the fourth order as for the other angles of bank. Even at the
"leapfrog" position (last point computed) the agreement is good if ninth-
order terms are used. If only terms out to the fourth order are used,
the largest error appears in the 2z coordinate of the fast moving vor-
tices 1 and 2, but at a point which, for & = 12, would correspond to a
distance downstream of four times the wing span, the error is still less
than 10 percent of the total change of position in the =z direction, or
about 5 percent of the wing span.

From this comparison with the work of Sacks, together with the fact
that the water-tank pictures for other angles of bank also show qualita-
tive agreement with the computed vortex positions, it appears that the
series computations give satisfactory results for a distance of several
wing spans behind the trailing edge.

As a further check on the dependability of the series method the
results for ¢ = n/4 using one term of the series, two terms, three terms,
etc., are presented in figures 5 and 6, again in comparison with the
results calculated from the formulas

of Sacks. In these figures the 10 I [
values of y/sy and z/sy; are plotted ya/s, and -ys/s,,
separately against the parameter T, — == o—At—o —“5 o]
which is related to the downstream
. 5 . .5
distance as in equation (12), so
that 7 e I ° ° o-——
. ¥1/8y and -ya/sw/
T = XCLwl6 % 2 4 6 8 0
SwAwa4
0
Z)/sy ond z2/s,
It can be seen from these figures _.:ti}f:2=-i —d i?\:§ o
that the series appears to converge ‘ | _I
quite rapidly for small values of -5 - :‘;::':"O:Br)e“
T, and to converge, although more 2/s,) '
slowly, even for the highest value 2als 4 20/
of T wused. Sketch (b) shows the 370w ONT EaSw
sum of the first n +terms plotted om0
against n, out to n =9, for
T = 0.517 for vortices 1 and k.
(The first term, n = O, is not shown 1S
0 2 r [

as it is simply the initial posi- n
tion.) It can be seen that in both $=x/4, T=05I7
cases the series for y/sy con-

verges very quickly. Note also that

only the odd powers of T appear in Sketeh (b)




1k

10 - 5
'\_y4/s'
5 0
"fl”v:
y/Sw /_y,/s,: y /sy 1/2/5W ;
0 -5
oS
Ve, e
-.5 O—6 .o
Myzlsw / 2,/s
-10 -1.5 __—,
o 2 pt 0 2 4

é-%/8, T=0.57

Sketeh (c)
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the series for y/sw. The series for
z4/sw alternates and that for 21 /sw
does not; however, both approach the -
correct value very rapidly at T =0.517.

Figures 7 and 8 show y/sy and
z/sw plotted against T for each of
the four vortices for a bank angle of
7/8. Only fourth-order terms are
available for this case, but it can be
seen that the behavior of the series
is very similar to that observed for
¢ = n/h. Sketch (c) shows the sum of
the first n terms for ¢ = /8 plot-
ted against n out to n = 4 for each
vortex for T = 0.517, further sub-
stantiating the statement concerning
similar behavior, although the con-
vergence is slower.

It appears from these considerations that for small values of T

only two or three terms of the seri
are enough to give good results out

es are required and that four terms
to about T = 0.5. Beyond that point

the results become somewhat doubtful unless more terms are used, but this

provides a fairly wide range of use

fact that for a 1ift coefficient of 0.5 and an aspect ratio of 2, T = 0.5

corresponds to about six span lengt

CATCULATION OF LIFT

The 1ift on the tail of a slen

ful values, as can be seen from the

hs behind the trailing edge of the wing.

ON A CRUCIFORM TAIL

der wing-tail combination due to the

vortices from the wing can be computed by reverse flow techniques as

discussed in reference 3, on the as
ence the positions of the vortices.

sumption that the tail does not influ-
The equation

= .
2 2 21.2 2 2

Np = T Upsy{- 2 + 2 [L <1+_@__b_> +l+_b_h__<1+h__b_
b sty |vlJ2 812 842 si* st2  s¢2

(13)
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given in reference U4 yields the nor- R

mal force on a component tail, or b\\\\\\\ P
tail plane (see sketch (d)), due to
a single vortex. Note that a factor
has been placed in front of the
outer radical to take account of the
case of b < 0. The effects of all
the vortices must be summed for each
component tail and the components of
force in the 2z direction added to
give the 1lift.

o

The configuration chosen for
the present calculations was a cru-
ciform tail interdigitated behind a
cruciform wing as in sketch (e), z
where the tail components are desig-
nated V and H as shown. Note that .jr‘
the tail center line is an extension
of the wing center line, whereas the
x axis lies in the stream direction.

Since no account was taken of the \\\\\‘~..¥m

effect of the tail on the vortex %ﬂ”
paths, the vortex positions used in // 4
the force calculations were those ////\
already computed in the absence of )

a tail for the station corresponding

to the tail trailing edge. Sketeh (e)

The normal-force coefficients on each tail plane have been computed
from equation (13) for four angles of bank for three ratios of tail span
to wing span, and for T = 0.247 and T = 0.411. It should be noticed
that varying T corresponds to varying either the tail length, the wing
1ift coefficient, or the aspect ratio (see eq. (12)). For Cr, = 0.5 and
A = 2 these values of T correspond to x/sy = 6 and x/sy = 10. The
results are shown in figure 9.

In figure 10 is shown the 1ift coefficient of the tail due to the
presence of the vortices, that is, the interference 1lift coefficient,
CLI’ measured in the positive z direction (the same direction as the

1ift on the wing). It is interesting to note that for T = 0.247 and
st/sy = 1, and also for T = 0.411 and sy/sy = 1.2, there is very little
variation of interference 1lift coefficient with angle of bank.

A comparison with analytical results obtained by the method of ref-
erence 5 for 45° angle of bank is shown in figure 11, in which the inter-
ference 1ift is plotted against the tail-span to wing-span ratio. The
agreement is very good, as of course should be expected since the vortex
positions agree so well.
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CONCLUDING REMARKS

Computations of vortex paths and of forces on a tail behind a slender
equal-span cruciform wing have been made using a series to determine the
vortex positions as a function of the distance downstream. The results
show that, for a bank angle of 45°, only a few terms of the series are
needed to provide satisfactory agreement with the known analytic solution
at downstream distances encompassing most practical missile tail posi-

. tions. Comparison with water-tank pictures of the vortex patterns for
other angles of bank, and consideration of the relative sizé of succes-
sive terms of the series, indicate that the same is true for the general
case where no analytic solution is known.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 8, 1956
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APPENDTX A
WALL-INTERFERENCE CORRECTIONS

As in the case of tunnel-wall corrections, the effect of surrounding
a group of vortices with a solid cylindrical boundary of radius R can
be calculated by the method of images when the vortex positions and
strengths are known. . :

For each vortex within the boundary, the position is given as £
vhere § =y + iz and 1 =~J:T. The position of the image outside the
boundary is then known and is R2/Cj where ¢ =y - iz. Then at a
point { the complex velocity due to the image vortex is

W=v -iw = §L [é;§-1n<j - 5?)] = ———jf;l———— (A1)
7 .
SRR
£

If the field of interest is confined to a small ares in the center of
the cylinder and if the vortices also remain in this area, { may be

neglected as very small compared to Ra/cj and the complex velocity

due to a number of image vortices may be written

n

. }z 1(-r383) (a2)
. 2nR®
J=1
Then
N
pel n
r - r
2nR2 J orR2
J: J':l ‘
) (A3)
n n
& (-r's) - (-rsz4)
v = (T RPif, = J_d
27R2 J 2rR2 )
J=1 J=1

Since the present report is concerned with an equal-span cruciform
wing, there are assumed to be only four vortices within the boundary and
the relation between their strengths is
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r
I'y = -T'z = Iysin ¢ "
| (5) -
'y = =-I's = I'ycos ¢
Then at the center of the cylinder
W
Tsr . =
V=g _(yl - y3)81n g+ (v, ~-\:‘,y2)cos ¢]
| P (ab)
- v r(zl - z3)sin @ + (z, - zz)cos ¢ }
2rR2 |
J
where Yir» Y5 Ygr ¥, and 2z1, Zp, Z3, and z4 depend on t. At t =0
the positions of the vortices are known in terms of ¢ and the semispan,
sy, and the expressions for w and v simplify to
_ Twsw
Lr2
(45)
v=20
for any angle of bank. -
For the special case of 45° bank angle, sin ¢ = cos ¢ = L and
symmetry provides relations between. the vortex positions so that
Ty |
w=—(y, +7,)
R2 2 -
\ 1 (46)
v=20
at any time +t. Furthermore it is known (see refs. 1 and 2) that for
this case (yl + y4) is constant with time so at the center of the cylinder
.

w = constant; v=0 (AT)

as long as symmetry with respect to the 2z axis is maintained.
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Since, near the center of the cylinder, the upwash for all angles of.
bank is the same at t = O and the upwash for @ = x/k does not change
with time, it has been assumed that one correction, namely,

FWSW
Ir2
t
could be used throughout. This resulted in a correction of Eﬁfﬂ. to
. R2

the z position at any time, t, where R is the radius of the water tank.
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cruciform wing at four different angles
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x/s; = 5.2

(a) ¢ = n/16

Figure L4.- Photographs of wake at various stations behind a cruciform
wing of aspect ratio 2, for three different bank angles; @ = ﬂ/l?.
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(b) ¢ = /8 - Concluded.

Figure 4.- Continued.
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(c) ¢ = 3n/16

Figure 4.- Concluded.
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Figure 8.- Variation with the parameter T of vertical position z/sW
for each of the four vortices behind a cruciform wing, calculated with
one, two, three, and four terms of the series; ¢ = K/8.
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